
 1

UTAH GOVPAY:

THE OFFICIAL PAYMENT SOLUTION FOR UTAH GOVERNMENT

Technical Manual

“Extend the power of your website…by taking payments online”

 2

This Utah GovPay Technical Manual contains the following information:

THE OFFICIAL PAYMENT SOLUTION FOR UTAH GOVERNMENT ...1
PAYMENT DATA SECURITY ..3
GOVPAY METHOD OPTIONS...4
POST METHOD OVERVIEW: ..5
POST TERMINOLOGY ..5
POST FEATURES ..6
WPS WEB SERVICE METHOD OVERVIEW: ...9
WPS TERMINOLOGY ..10
WPS FEATURES ..10
OPERATIONS ..11
COMPLEX XML TYPES ...13

APPENDIX 1 ...18
APPENDIX 2 ...20

 3

PAYMENT DATA SECURITY

Utah GovPay has been designed to protect consumerʼs sensitive information from theft through strong
security procedures. The procedures have also been designed to reduce the risk and liability to a state
agency in processing and handling payment information. They have also been designed to reduce the
liability for the State of Utah to be compliant with the Payment Card Industry (PCI) Data Security
Standard (DSS).

The procedures used by Utah GovPay for handling and storing payment information is described in the
following steps.

Step 1. The consumer is handed from the state agencyʼs application to Utah GovPay before any
payment information (credit card or echeck) is requested or entered. This step limits the payment
information to be only handled between the consumerʼs browser and the SSL connection to Utah
Interactive, which is outside of the firewall that the State of Utah uses to protect agency web
applications.

Step 2. After the consumer is connected to the Utah Interactive, they are asked to enter in their
payment information and address. The payment information is encrypted and sent to the Utah GovPay
website where the payment information is then unencrypted inside the Utah Interactive firewall.

Step 3. The transaction details are logged in a Database but the full credit card number, credit card
expiration date, CVV code, routing number, and account number are not included as part of this log.
Only the first 2 digits and last 4 digits of the credit card number or account number are stored in the log.
The CVV code, the expiration date and routing number are never stored in the database log file.

Step 4. The full payment details, including the full credit card number are sent to a third party processor
such as Paymentech. These details are encrypted with SSL inside the Utah Interactive firewall and
transmitted directly to the payment processor. A unique transaction number created by Utah Interactive
is also sent with the credit card information. This transaction happens outside of the firewall provided
by the State of Utah.

Step 5. The payment processor responds to Utah GovPay with the transaction number and a message
that determines if the transaction was accepted or declined. No sensitive payment information is sent
in this response message. This message is also sent via SSL encryption.

Step 6. Utah GovPay logs the payment results in the database. The log does not include full credit
card numbers, expiration date, CVV code, routing or account numbers. At this point, Utah Interactive
does not store any record of the full credit card account number, expiration date, CVV code, routing or
account numbers.

Step 7. Utah GovPay responds to the consumer that the transaction was either accepted or declined.
The user is able to try again and it is recorded in the Utah GovPay as a separate payment transaction.

Step 8. The consumer then is either directed back to the state agency website or completes the
transaction. The state agency can query the results of the transaction but sensitive payment
information is never sent to the agency.

Utah GovPay has a reporting website where state employees are able to log in and see the details of
each payment attempt. The Utah GovPay reports displays the following information:

 4

 Payment type (Credit Card type or eCheck),

 Partial credit card or account number,

 Name on credit card or account,

 Address,

 Transaction ID numbers,

 Transaction Status Messages,

 Date & Time.

THROUGHOUT THE ENTIRE PAYMENT TRANSACTION, THE CONSUMERʼS SENSITIVE
PAYMENT INFORMATION SUCH AS FULL CREDIT CARD NUMBER, EXPIRATION DATE,
AND CVV ARE NEVER STORED IN ANY RECORD IN UTAH GOVPAY AND ARE NEVER
TRANSMITTED INTO THE STATEʼS FIREWALL. EVERY TIME SENSITIVE PAYMENT
INFORMATION IS SENT OVER THE INTERNET BETWEEN THE CONSUMER AND UTAH
INTERACTIVE, OR BETWEEN UTAH INTERACTIVE AND THE THIRD PARTY PAYMENT
PROCESSOR, IT IS ENCRYPTED WITH SSL.

GOVPAY METHOD OPTIONS

Utah GovPay provides secure transaction processing in two different methods. Each of these
methods includes different feature sets. The following descriptions are brief overviews for
these methods and detailed feature sets of each method are outlined later in this document.

1. Post method – This method provides a simplistic approach to payment processing by
transmitting payment data via secure URL. It also provides a post back function that will
relay transaction status back to a location designated by the agency. This method does
not allow for customizable data fields.

2. WPS Web service method –This provides a more complex and customizable payment
processing method via secure web service. It can be customized by adding additional
data fields and multiple line items. It does not initiate the return of transaction status
data. Transaction status is obtained only when the agencyʼs application initiates a
query for the transaction status data.

 5

POST METHOD OVERVIEW:

The Utah GovPay POST implementation allows for a simple method of passing customer
transaction information between the agencyʼs web application and Utah GovPay. The process
is initiated by POSTing information using a URL and Utah GovPay will complete the
transaction. Once the transaction is complete, Utah GovPay will use a post-back URL to
return the transaction status to your agencyʼs web application.

POST TERMINOLOGY

* Post - The process of transmitting data via URL. The calling application will pass this data
string to GovPay.

 6

* Calling Application – This is the outside application built by the agency.
* Web Service – A piece of software that can be accessed over the Internet by another
application using XML to send or retrieve information.
* Web Application – A web application uses a web site as a front end to interact with users
across the Internet.

POST FEATURES

Current features of the Post method are:

 * Simple yet secure and effective payment method.
 * Register transaction from calling application to GovPay.
 * Able to handle multiple line items.
 * Post successful transaction details back to the calling application.

Please use the test URL until you are ready to accept live transactions. If you have any
questions please contact your product manager at Utah Interactive for assistance.

POST URL for test:
https://test.secure.utah.gov/govpay/checkout

POST URL for production (to be used only to accept live transactions):
https://secure.utah.gov/govpay/checkout

Post Parameters

Property Required Description

account_name YES The name of the account we are going to use to
perform this transaction against (this will make sure
it ends up in the correct GovPay account).

payment_types YES CREDITCARD for credit card, ECHECK for e-
check. If you utilize both separate them with the |
symbol. Example: CREDITCARD|ECHECK.

shared_secret_name ECHECK The Shared Secret name for a Electronic check
transaction (required only when ECHECK is used)

shared_secret_value ECHECK The Shared Secret value for a Electronic check
transaction. (required only when ECHECK is used)

amount1 YES The amount for this transaction.

 7

transaction_id1 YES The transaction id you want to give to this
transaction.

item1 YES The description of the item you are selling.

post_back_url YES The URL we will use to post transaction data back
to the calling application.

success_url NO The URL we will direct to after the POST
completes.

cancel_url NO The URL we will direct to if the user clicks on the
associated button (if added to the implementation
skin)

skip_reciept NO The GovPay generated receipt can be bypassed.
Possible values: true, false

name NO The name of the person that is going to complete
the transaction (if already known beforehand).

address_line_1 NO The address line 1 of the person that is going to
complete the transaction (if already known
beforehand).

address_line_2 NO The address line 2 of the person that is going to
complete the transaction (if already known
beforehand).

city NO The city of the person that is going to complete the
transaction (if already known beforehand).

postal_code NO The postal code of the person that is going to
complete the transaction (if already known
beforehand).

state NO The state/province of the person that is going to
complete the transaction (if already known
beforehand).

email_address NO The email address of the person that is going to
complete the transaction (if already known
beforehand).

 8

Post Return Parameters

Property Description

registrationId The ID that Utah Interactive generates as a result of registering
a transaction with the information passed in via the parameters
to the POST API call.

transaction_id1 The transaction_id parameter passed into the POST API call.

payment_types The payment_types parameter passed into the POST API call.

amount1 The amount for this transaction.

card_type The type of card used in the payment. Visa, Mastercard, etc.
In the case of an echeck payment returns ECHECK.

item1 The description of the item you are selling.

name The name collected on the GovPay payment information page.

address_line_1 The address line 1 collected on the GovPay payment
information page.

address_line_2 The address line 2 collected on the GovPay payment
information page.

city The city collected on the GovPay payment information page.

postal_code The postal code collected on the GovPay payment information
page.

state The state/province collected on the GovPay payment
information page

email_address The email address collected on the GovPay payment
information page.

country The country that is collected on the GovPay payment
information page.

NOTE: SEE APPENDIX 1 FOR POST METHOD EXAMPLE CODE.

* When passing multiple line items amount1, item1 and transaction_id1 would be the first line item.
Additional line items would use the same parameters ascending incrementally in numerical order. (ex:
amount2, item2, transaction_id2 and amount3, item3, transaction_id3)

 9

WPS WEB SERVICE METHOD OVERVIEW:

The Utah GovPay WPS web service provides a secure method to pass customer transaction
information between the Agencyʼs web application and Utah GovPay via web service.

The WPS is the backend link into the Utah GovPay system and was designed to prevent web
users from fraudulently altering their own transaction data. WPS has two main functions,
registering transactions and querying transactions. In the registration process, the agencyʼs
web application sends the transaction data to WPS and WPS returns a registration ID. The
Agencyʼs web application then forwards the user to Utah GovPay with the registration ID.

After a completed payment transaction, the Agencyʼs web application can use the registration
ID to query WPS to find out if the transaction was approved.

The Register Transaction process follows the following steps:

1. When the user is ready to make a payment, the agencyʼs web application sends details
of the payment in XML using the Soap format to the Utah GovPay Web Service or WPS.

2. The Utah GovPay WPS creates a Registration ID, stores the transaction information
and registration ID in a database and returns a registration ID back to the agencyʼs web
application.

3. The agencyʼs web application redirects the user to the Utah GovPay URL and includes
the registration ID in the query string. This Utah GovPay URL will be created during the
Utah GovPay setup.

 10

4. The Utah GovPay website uses the registration ID to retrieve the transaction data and
then takes the user through the payment process.

The Query Transaction process:

1. The agencyʼs web application sends a soap message with the registration ID
2. The Utah GovPay Web Service returns the results of the transaction. The details of the

soap message are listed below in the Complex XML types under
TransactionDetailResponse.

WPS TERMINOLOGY

* Registration Id - The unique identifier used generated by WPS. The calling application should
pass this to WPS when the user is handed off.
* Calling Application – This is the outside application built by the agency.
* Web Service – A piece of software that can be accessed over the Internet by another
application using XML to send or retrieve information.
* Web Application – A web application uses a web site as a front end to interact with users
across the Internet.

WPS FEATURES

Current features of the WPS web service are:

 * Register Transaction Details
 * Retrieve TransactionDetailResponse in XML for a single transaction
 * Retrieve StatusResponse in XML for a single transaction

 11

OPERATIONS

The following operations are available in the WPS web service.

Register a Transaction – Information about the transaction is sent from the Calling
Application to WPS and a registration ID is sent back the Calling Application. The name of this
operation is “register”.

Query a Transaction – The registration ID or a group of registration IDʼs are sent from the
Calling Application to WPS and the results of the transaction are returned to the Calling
Application. There are two operations that can be used to retrieve information about the
transaction after it has been processed. * getTransaction returns all the transaction
information in an XML format.
* getStatus returns transaction status information in an XML format.

Operations:

1. register

Register a transaction with WPS using the information in the RegistrationRequest object
that was passed to the operation. The register operation returns a
RegistrationResponse object. This object is populated with information relative to the
operation's response. The two main items of interest in the RegistrationResponse
object are the registrationId and statusCode property. The registrationId property
contains necessary registration data. If the statusCode is less than zero, an error has
occurred and then more information about the error can be found in the errorMsg
property.

 Input: RegistrationRequest
 Output: RegistrationResponse

2. getTransaction

This operation returns a TransactionDetailResponse object populated with information
based on the requested transactionId that was originally registered with WPS. After
the TransactionDetailResponse object is obtained, the statusCode property should be
analyzed. A statusCode of less than zero, an error has occurred and errorMsg is
populated with more information.

 Input: registrationId
 Output: TransactionDetailResponse

 12

3. getStatus

This operation returns some basic status information about the registration that was
originally registered with WPS. A StatusResponse is returned to the user as a result of
this operation. After a StatusResponse object is obtained, the statusCode should be
analyzed. A statusCode of less than zero indicates an error has occurred and the
errorMsg of the StatusResponse object has more information about the error that
occurred. The getStatus operation is useful when a particular transaction is registered
with the expirationTime property being greater than zero.

 Input: registrationId
 Output: StatusResponse

Protocol level properties:

USERNAME_PROPERTY which is the username.
PASSWORD_PROPERTY which is the password.
ENDPOINT_ADDRESS_PROPERTY which is the web service endpoint.

Note the protocol level properties needed to be set because the WPS web service uses BASIC
authentication for authenticating and authorizing usage of this web service. See the example
code on how to set this for JAX-WS.

WSDL URL for Test:
https://test.secure.utah.gov/wps/WpsService?wsdl

WSDL URL for Production:
https://secure.utah.gov/wps/WpsService?wsdl

Entry point URL for Test:
https://test.secure.utah.gov/govpay/checkout

Entry point URL for Production:
https://secure.utah.gov/govpay/checkout

Operation Name Input Output Faults
register * RegistrationRequest

RegistrationResponse Generic SOAP

fault should an
error occur

getTransactions * RegistrationID TransactionDetailResponse Generic SOAP
fault should an
error occur

getStatus * RegistrationID StatusResponse Generic SOAP
fault should an
error occur

 

 13

Complex XML Types

RegistrationRequest

Property Type Size Required Description

allowedPaymentTypes String [] 128 Yes An array of values indicating the types of
payment a user can make. Possible values:
CREDITCARD, ECHECK.

items RequestItem [] > 0 Yes An array of RequestItem objects.

addrLine1 String 128 No Value to use to pre-populate the credit card
address line 1 address.

addrLine2 String 128 No Value to use to pre-populate the credit card
address line 2 address.

city String 128 No Value to use to pre-populate the credit card city
field.

emailAddr String 128 No Value to use to pre-populate the credit card email
address field.

name String 128 No Value to use to pre-populate the credit card name
field.

postalCode String 128 No Value to use to pre-populate the credit card postal
code field.

stateProvince String 128 No Value to use to pre-populate the credit card
state/province field.

sharedSecretName String 128 eChecks The name of the shared secret to display to the
user. eChecks require users to confirm some
information.

sharedSecretValue String 128 eChecks A value that the user should know that is used to
authenticate them when making eCheck payment.

successMsg String 128 No A message to be displayed upon successful
payment.

successUrl String No
Limit

No The URL where the user is sent upon a successful
payment.

failUrl String No
Limit

No The URL where the user is sent upon an
unsuccessful payment.

expirationTime integer > 0 No The number of minutes to allow this transaction
to remain active in WPS before the transaction
times out. The default is 0 and is interpreted as no
timeout. In other words, if this value is not
specified, the transaction will never timeout.

 14

RequestItem 

Property  Type  Size  Required  Description 

amountEach  double  > 0  Yes  The dollar amount that this RequestItem costs. 

customerId  String  128  Yes  A value that uniquely identifies the customer
in the calling application. Examples include
license or account numbers. 

customFields  RequestItemCustomField
[] 

N/A  No  An array of custom fields that are passed into
WPS. See the reference for
RequestItemCustomField. 

description  String  255  Yes  A description of the item. 

quantity  double  > 0  Yes  The quantity of this item. 

transactionId  String  128  Yes  Unique identifier for the transaction in the
calling application. Must be unique. 

transactionType  String  128  No  A code identifying the type of transaction that
this item is participating in. If applicable, the
FINET code should be put here. 

RequestItemCustomField 

Property  Type  Size  Required  Description 

name  String  64  Required only when value is also specified  The name of the custom field 

value  String  128  Required only when name is also specified  The value of the custom field 

 15

RegistrationResponse 

Property  Type  Size  Required  Description 

statusCode  integer  > 0 Yes  The status code indicates the status of the transaction.
If status code is less than 0, it indicates there was a
problem with the request and greater than 0 indicates
the request succeeded. If status code is less than 0,
the error message should be analyzed for further
information. 

errorMsg  String  No limit  No  This will only be populated if the status code has a
value less than zero which indicates there was a
problem completing the users request. 

registrationId  String  128  No  The registration id of the transaction that was
registered with WPS. 

StatusResponse 

Property  Type  Size  Required  Description 

statusCode  integer  > 0 No  The status code indicates the status of the transaction. If
status code is less than 0, it indicates there was a
problem with the request and greater than 0 indicates the
request succeeded. If status code is less than 0, the error
message should be analyzed for further information. 

errorMsg  String  No limit  No  This will only be populated if the status code has a value
less than zero which indicates there was a problem
completing the users request. 

transactionStatus  String  No limit  No  The following are the statuses and their meanings:

timed-out=the registered transaction has exceeded its
time limit in WPS.

error=the payment for this transaction received an error
at the payment gateway.

successful=the transaction was successful

declined=the payment was declined for this transaction

not-found=the requested transaction could not be found
(the registration id is invalid) 

 16

isTimedOut  boolean  N/A  Yes  This is set to false by default. It is only true if the
registered request has exceeded the timeout period set in
the expirationTime property located in the
RegistrationRequest object. 

TransactionDetailResponse 

Property  Type  Size  Required  Description 

statusCode  integer  > 0 Yes  The status code indicates the status of the transaction. If
status code is less than 0, it indicates there was a problem
with the request and greater than 0 indicates the request
succeeded. If status code is less than 0, the error message
should be analyzed for further information. 

errorMsg  String  No
limit 

No  This will only be populated if the status code has a value
less than zero which indicates there was a problem
completing the users request. 

registrationId  String  128  No  The registration id of the transaction that was originally
registered with WPS. 

addrLine1  String  128  No  The first address line of the transaction that was originally
registered with WPS. 

addrLine2  String  128  No  The second address line of the transaction that was
originally registered with WPS. 

authorizationCode  String  10  No  The code provided by the payment processor. 

auxiliaryMessage  String  255  No  A message that provides further information about the
status message. 

city  String  128  No  City used for the payment. 

completionDate  Timest
amp 

N/A  No  The date the transaction completed. 

country  String  128  No  The country used for payment. 

error  String  10  No  "true" or "false" The false result could be caused by either
a success or a declined transaction. 

gatewayTransactionId  String  128  No  The transaction id provided by the payment gateway. 

 17

name  String  128  No  Name used for payment. 

orderId  String  16  No  Unique order id automatically assigned by the system. 

paymentSuccessful  String  10  No  "true" or "false" The false result could be caused by either
a technical error or a declined transaction. 

postalCode  String  10  No  The postal code used for the payment. 

stateProvince  String  2  No  The 2 character state/province code used for the payment.  

statusMessage  String  255  No  The message provided by the payment processor. 

Note: The total payment amount for the transaction is calculated by multiplying each
wps.service.RequestItem quantity by the wps.service.RequestItemʼs amount.

Additional Note: See Appendix 2 for Web Service JAX-WS example.

 18

Appendix 1

Post Method example code

<html>
 <head><title>GovPay Test Page</title></head>
 <body>
 <form method="POST" action="https://test.secure.utah.gov/checkout">
 <table>
 <tr>
 <td>Post Back URL:</td>
 <td><input type="text" name="post_back_url" value=""></td>
 </tr>
 <tr>
 <td>Success URL:</td>
 <td><input type="text" name="success_url" value=""></td>
 </tr>
 <tr>
 <td>Cancel URL:</td>
 <td><input type="text" name="cancel_url" value=""></td>
 </tr>
 <tr>
 <td>Shared Secret Question:</td>
 <td><input type="text" name="shared_secret_name" value=""></td>
 </tr>
 <tr>
 <td>Shared Secret Value:</td>
 <td><input type="text" name="shared_secret_value" value=""></td>
 </tr>
 <tr>
 <td>Amount:</td>
 <td><input type="text" name="amount" value=""></td>
 </tr>
 <tr>
 <td>Transaction ID:</td>
 <td><input type="text" name="transaction_id" value=""></td>
 </tr>
 <tr>
 <td>Description:</td>
 <td><input type="text" name="item" value=""></td>
 </tr>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" value=""></td>
 </tr>
 <tr>

 19

 <td>Address line 1:</td>
 <td><input type="text" name="address_line_1" value=""></td>
 </tr>
 <tr>
 <td>Address line 2:</td>
 <td><input type="text" name="address_line_2" value=""></td>
 </tr>
 <tr>
 <td>City: </td>
 <td><input type="text" name="city" value=""></td>
 </tr>
 <tr>
 <td>Postal Code: </td>
 <td><input type="text" name="postal_code" value=""></td>
 </tr>
 <tr>
 <td>State/Province: </td>
 <td><input type="text" name="state" value=""></td>
 </tr>
 <tr>
 <td>Email Address:</td>
 <td><input type="text" name="email_address" value=""></td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 <input type="hidden" name="account_name" value="myaccount">
 <input type="hidden" name="payment_types" value="CREDITCARD|ECHECK">
 <input type="submit" value="Submit">
 </td>
 </tr>
 </table>
 </form>
 </body>
<html>

 20

Appendix 2

Web Service JAX-WS example

The following code is a sample implementation of how to use a JAX-WS client to connect to
our WPS web service. Please note that the WpsService and WpsServiceService are generated
by the wsgen generator.

package mywpstest;
import javax.xml.ws.BindingProvider;

public class Main {

public static void main(String[] args) {
 Main main = new Main();

 WpsService service = new WpsService(
 new URL("https://test.secure.utah.gov/wpsv2/WpsService?wsdl"),
 new QName("http://service/", "WpsService"));
 Wps client = service.getWpsPort();
 BindingProvider provider = (BindingProvider) client;
 provider.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
"junit_test");
 provider.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
"+49egacr");
 provider.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"https://test.secure.utah.gov/wpsv2/WpsService?wsdl");

 RegistrationResponse response = main.register(client);

// now we can examine the response to see if our registration was successful or not.
 if (response.getStatusCode() < 0) {
 System.out.println("An error occurred during transaction registration. The error
message is: " + response.getErrorMsg());
 System.exit(response.getStatusCode());
 }

 System.out.println("Apparently the transaction was successfully registered");
 System.out.println("Registration ID: " + response.getRegistrationId());

 // get the status of the registered transaction
 StatusResponse status = client.getStatus(response.getRegistrationId());

 if (status.getStatusCode() < 0) {
 System.out.println("there was a problem getting the status");

 21

 System.out.println("error msg: " + status.getErrorMsg());
 }

 System.out.println("status response: " + status.getTransactionStatus());

 // get the transaction
 TransactionDetailResponse transaction =
client.getTransaction(response.getRegistrationId());

 if (transaction.getStatusCode() < 0) {
 System.out.println("there was a problem getting the transaction");
 System.out.println("error msg: " + transaction.getErrorMsg());
 }

 System.out.println("transaction response: " + transaction.getStatusMessage());
 }

 private RegistrationResponse register(Wps client) {
 RegistrationRequest request = new RegistrationRequest();
 request.getAllowedPaymentTypes().add("CREDITCARD");
 request.getAllowedPaymentTypes().add("ECHECK");
 request.setAddrLine1("123 Main St");
 request.setCity("Salt Lake City");
 request.setStateProvince("UT");
 request.setEmailAddr("test@test.com");
 request.setName("Test Request 1");
 request.setPostalCode("84111");
 request.setExpirationTime(0); // initially, we'll try the default timeout period
 RequestItem item = new RequestItem();
 item.setAmountEach(5);
 item.setCustomerId("abc123");
 item.setDescription("transaction item 1");
 item.setQuantity(1);
 item.setTransactionId("abc123-1");
 request.getItems().add(item); // potential failure point. what if the result of getItems() is
null?
 RegistrationResponse response = client.register(request);
 return response;
 }
}

